Volume 62, Number 1, 2025

Al-driven power consumption analysis for a solar
electric vehicle

Petric Alexandra
Faculty of Automation and Computer Science
Cluj-Napoca, Romania
petric.al.alexandra@student.utcluj.ro

Abstract— The purpose of this paper is to emphasize the
dynamics between Solis vehicle’s velocity and energy
consumption and regeneration, analysis based on the data
gathered from the latest competition in Belgium. We have
trained an AI model to give us the statistics that will
furthermore allow us to improve our future vehicle
model’s performance.

Keywords— graphical convolutional networks, artificial
intelligence, machine learning, electric vehicle energy
consumption.

I. INTRODUCTION

Solar-powered vehicles promise responsible energy
consumption, but their efficiency stems from advancements in
battery storage, electrical efficiency and efficient driving
patterns. The approach was to create an Al-based model using
GCN (Graph Convolutional Networks) to analyze telemetry
data and get insights on possible future improvements.

GCN is a multilayer graph convolutional neural network,
where each convolutional layer processes only first-order
neighborhood information, and by stacking several
convolutional layers, information transfer in multiple-order
neighborhoods can be achieved [1].

This capability makes them particularly useful in
applications where relationships and interdependencies
between components are crucial to solving the problem. One
such field is that of electric and solar vehicles, where
numerous parameters - from operating conditions and battery
status to route characteristics - interact in complex ways to
determine system performance [2], [3].

The GCN model serves three primary functions in
optimizing energy consumption for our solar vehicle:

1. Estimating real-time energy consumption - The
model analyzes telemetry data and provides energy
consumption predictions based on motor velocity and
power usage.

2. Simulating vehicle energy behavior in different
conditions - By modifying input parameters, the
model can simulate how energy consumption
fluctuates under various driving patterns and
environmental conditions.

3. Optimizing energy management strategies - The
insights from the model can be used to develop
improved driving techniques, and fine-tune vehicle
parameters to maximize efficiency in competitions.

© 2025 — Mediamira Science Publisher

Lungu loan Stelian
Faculty of Industrial Engineering, Robotics and Production
Management
Cluj-Napoca, Romania
lungu.ho.ioan@student.utcluj.ro

Based on the results obtained, the team can further
improve strategies in competitions and increase overall energy
performance.

II.GCN ARCHITECTURE

In the model discussed here, the focus is on analyzing the
relationship between Motor Velocity and Power
Consumption. Each entry in the dataset represents a vertex in
the graph, and edges connect each consecutive timestamp at
which data is registered. GCNs are composed of stacked graph
convolutional layers in a similar way that traditional CNNs are
composed of convolutional layers. Each convolutional layer
takes as input the nodes’ vectors from the previous layer (for
the first layer this would be the input feature vectors) and
produces corresponding output vectors for each node [4]. The
model consists of 7 convolutional layers, all having a
consistent width of 128 units and a dropout of 0.3 between
them for regularization.

, e} [Retw feeee| Rely

Py \
(ni0z4) {i024)

N, _/ . B

7

Fig. 1. Structure of GCN.

Each convolutional layer is defined through the following
mathematical formula:

~1 . 1
H = o(DzAD2X0) (1)

where, H represents the matrix of node embeddings 4, X
denotes the matrix of node features x,,, and o(") is an activation
function, in our case ReLU. The matrix A corresponds to the
graph adjacency matrix, enhanced with self-loops, while D
represents the degree matrix, also adjusted with self-loops.
Lastly, © is a trainable parameter matrix that helps optimize
the model.

8 ACTA ELECTROTEHNICA

The ReLU activation function is responsible for the
management of negative input data and is a part of the data
pre-processing process. The function returns 0 if it receives
any negative input, but for any positive value it returns that
value back, therefore it can be written as [5], [6]:

x+|x| _{lex >0
2

Relu(x) = x* =max(0,) === =190 o @

The implementation is carried out in PyTorch Geometric,
using the following structure that allows efficient processing
of data in the form of a graph and the application of
convolution operations. Below is the basic representation:

class GCN(torch.nn.Module):

def __init__ (self, input_dim, hidden_dim, output_dim):
super(GCN, self).__init_ ()
self.convl = GCNConv(input_dim, hidden_dim)
self.conv2 = GCNConv(hidden_dim, hidden_dim)
self.conv3 = GCNConv(hidden_dim, hidden_dim)
self.conv4 = GCNConv(hidden_dim, hidden_dim)
self.conv5 = GCNConv(hidden_dim, hidden_dim)
self.convé = GCNConv(hidden_dim, hidden_dim)
self.conv7 = GCNConv(hidden_dim, hidden_dim)
self.fc = torch.nn.Linear(hidden_dim, output_dim)
self.dropout = torch.nn.Dropout(0.3)

def forward(self, x, edge_index):

x = self.convl(x, edge_index).relu()
= self.dropout(x)
= self.conv2(x, edge_index).relu()
= self.dropout(x)
= self.conv3(x, edge_index).relu()
= self.dropout(x)
= self.conv4(x, edge_index).relu()
= self.dropout(x)
= self.conv5(x, edge_index).relu()
= self.dropout(x)
= self.conv6(x, edge_index).relu()
= self.dropout(x)
= self.conv7(x, edge_index).relu()
= self.dropout(x)
= self.fc(x)

return x

X X X X X X X X X X X X X X
I

Fig. 2. GCN code representation.

To better illustrate how information flows through a GCN,
the image below depicts how predictions are generated based
on known factors[7]:

l
Embedding '
Item Multi Layer GCN Propogation
Graph

Fig. 3. Schematic of information propagation in GCN [7].

III. DATASET DESCRIPTION AND PREPROCESSING

The dataset used in this study was collected during the
ILUMEN 2024 solar car competition in Belgium, specifically
from the Solis EV4 vehicle of the Technical University of
Cluj-Napoca (UTCN) team [8]. The Solis EV4 is the latest and
most efficient solar vehicle developed by the Solis team,
incorporating numerous improvements over previous models.

The input values are represented by sets of (Timestamp,
Motor Velocity, Power Consumption (+) and Power
Consumption (-)).

A. Data Preprocessing

To ensure that the data is in a format suitable for training
the GCN model, it has been pre-processed it in such a way that
there are no negative values. The reasons for this decision are:

1. Data Normalization: It was applied MinMaxScaler
to scale the data. This normalization enhances
training stability and accelerates = model
convergence, as the MinMaxScaler transforms
features by scaling each feature to a given range.

2. Elimination of Negative Values: By separating
positive and negative components, the model can
recognize distinct patterns and analyze the behavior
of each component independently.

Below is an example of processed data:

TABLE 1. PROCESSED DATA SAMPLE
time time_diff Power_CoiEnergy_Co Distance_k Consumpt MC_Motor' MC_MotorVelocity_ne
2024-09-2 0.185762 0 0 5.43E-05 0 0 10.94464
2024-09-2 0.067141 0 0 1.96E-05 0 0 10.93179
2024-09-2 0.294513 0 0 8.46E-05 0 0 10.74459
2024-09-2 0.198996 0 0 5.73E-05 0 0 10.76739
2024-09-2 0.049928 0.024611 3.41E-07 1.42E-05 0.024089 0 10.61965
2024-09-2 0.410612 0.025112 2.86E-06 0.000124 0.023035 0 11.33155
2024-09-2 0.193648 0.024163 1.30E-06 6.27E-05 0.020742 0 12.10805
2024-09-2 0.013602 0.024246 9.16E-08 4.71E-06 0.01947 0 12.94423
2024-09-2 0.237771 0.023173 1.53E-06 8.78E-05 0.017426 0 13.82243
2024-09-2 0.386892 0 0 0.000151 0 0 14.65
2024-09-2 0.048419 0.000214 2.87E-09 2.10E-05 0.000137 0 16.23742
2024-09-2 0.203844 0 0 9.07E-05 0 0 16.64333
2024-09-2 0.380726 0 0 0.000171 0 0 16.79007
2024-09-2 0.065232 0 0 2.81E-05 0 0 16.10052
2024-09-2 0.196775 0 0 8.31E-05 0 0 15.80134
2024-09-2 0.187776 0 0 7.72E-05 0 0 15.37923
2024-09-2 0.186235 0.004467 2.31E-07 7.29E-05 0.003168 0 14.65604
2024-09-2 0.05625 0.007364 1.15E-07 2.23E-05 0.005168 0 14.81149
2024-09-2 0.304244 0.010669 9.02E-07 0.000119 0.007555 0 14.67861
2024-09-2 0.245606 0.012365 8.44E-07 9.87E-05 0.008551 0 15.03076
2024-09-2 0.213641 0.014425 8.56E-07 8.84E-05 0.009678 0 15.49177

IV. TRAINING PROCESS

The training process of the Graph Convolutional Network
(GCN) involves iteratively updating the model's weights to
minimize the prediction error. The input features are
forwarded through multiple graph convolutional layers, where
each node aggregates information from its neighbors,
capturing spatial relationships in the data.

A. Loss function
The Huber loss function describes the penalty incurred by
a wrong prediction procedure. The formula for it is:

Ls(a) = { 3

2, if |x|<8,
8(1x1-38). if IxI>8,

By its mathematical definition, it does not penalize more
for outliers, leading to more stable and reliable predictions,
and provides an optimal compromise between Mean Squared

Volume 62, Number 1, 2025 9

Error (MSE) and Mean Absolute Error (MAE). The loss
parameter used is 6 = 1, which was chosen based on empirical
testing.

A. Optimization

For optimization, the model uses AdamW, a variant of
Adam (short for Adaptive Moment Estimation) which helps
models train efficiently while maintaining good generalization
by properly handling weight decay. In this case, the
parameters used are a learning rate & = 0.001 and a weight
decay A =1 x 107*. Such values ensure that overfitting of the
data is avoided. The general formula for the AdamW optimizer
is:

0, =0, —arm/(Jv +e)— A6, @)

Below are the exact parameters used in the code:

optimizer = torch.optim.AdamW(model.parameters(), 1r=0.01, weight_decay=1le-4)
scheduler = torch.optim.1r_scheduler.ReducelROnPlateau(optimizer, 'min', patience=50, verbose=True)

criterion = torch.nn.HuberLoss(delta= 0.8)

Fig. 4. AdamW code representation.

B. Use of data

The telemetry dataset is split into train data and test data
on a 80% - 20% ratio, to ensure balanced learning and
minimize possible prediction errors. Through
experimentation, we determined that 200 epochs provide the
best balance between model performance and avoiding
overfitting on the training data. This dataset is intended solely
for the final evaluation of the model, mimicking real-world
situations where the model must predict outcomes based on
entirely new and unfamiliar data.

The evolution of the training loss over the 200 epochs is
illustrated in the graph below:

Training Loss

25 50 5 100 125 150 175 200
Epoch

Fig. 5. Training loss over 200 epochs.

V. EXPERIMENT

The model’s results are interpretable through code-
generated diagrams that will be displayed in the following.

A. Experimental Setup

To evaluate the model's performance, there have been used
three standard metrics in regression problem:

e MAE (Mean Absolute Error): measures the
average of absolute errors [9].

1 -~
~Xitalyi = 9l ©)

e RMSE (Root Mean Squared Error): measures
the square root of the mean of the square errors.
[10]

Lrmo-0° ©)

e R2Score: indicates the proportion of the variance

of the dependent variable that is predictable from
the independent variable

IR 0i9)®
S -2

(M

B. Results and Analysis

Below is displayed the prediction of Power Consumption
over different time steps, prediction using solely the dataset
provided and the 80 - 20% data split:

Power_Consumption_kW: True vs Predicted

—— True Values

\ A \ .
h
0

ption_kwW
e
-

Power_Consumption |

i

{ i) |
!
f

)
|
|
;

i f

})
|
i
1 I l

l s L! J;l_

Predicted Values

o 100 200 300 400 500 600 700 800
Time Steps

Fig. 6. Comparison of actual vs. predicted power consumption values on
training data.

As for testing the model on entirely new data, the graph
below is the best representation:

Power_Consumption_kW: True vs Predicted (New Dataset)

" —— True Values
f Predicted Values

kw
S—
el
]

onsumption_|
—

Power_C

|
{
I]
- y
3 100 2%0 %o P B w0 70 %0
Time Steps

Fig. 7. Comparison of actual vs. predicted power consumption values on
unseen test data.

The experimental results are presented in Table 2, which
compares the performance of the model on the drive set and
on the test set.

TABLEII. GCN MODEL PERFORMANCE
Metric Test Dataset Train Dataset
MAE 0.3095 0.1507
RMSE 0.5371 0.2560
R2 Score 0.9214 0.9782

10 ACTA ELECTROTEHNICA

On the test set, a slight degradation in the model's
performance is visible, from 97% to 92%.

These test dataset results provide an overview of the
model’s accuracy when handling unseen data. These
predictions are critical for optimizing the vehicle’s energy
consumption in competitions. The 92% efficiency indicates
that the model can reliably predict energy usage, allowing for:

- Better route and driving strategy planning, reducing
unnecessary power consumption.

- Informed decision-making during competitions,
enabling the team to allocate energy more efficiently,
and identification of potential inefficiencies in
energy management.

By leveraging these results, Solis can enhance
performance and sustainability, potentially gaining an
advantage in future races.

VI. CONCLUSION

Predicting energy consumption based on parameters like
motor velocity is crucial for optimizing the performance of
solar vehicles in real-world conditions. Al-based models, like
the one presented, not only provide accurate predictions but
also offer insights into ideal values and conditions for
maximizing energy efficiency, ultimately promoting
sustainability. With a larger dataset, models like this have the
potential to evolve from theoretical applications to industrial
usability, further advancing the future of solar-powered
transportation.

ACKNOWLEDGMENT

I would like to express my gratitude towards Solis UTCN
project and to the Solis team for granting access to their

valuable competition database, and for offering their valuable
input. This research would not have been possible without
their willingness to share data collected during ILUMEN 2024
solar car competition. The comprehensive dataset from Solis
EV4 vehicle provided the foundation for developing and
validating our GCN-based system for predicting power
consumption based on motor velocity.

REFERENCES

[1] T. N. Kipf and M. Welling, "Semi-Supervised Classification with
Graph Convolutional Networks," in International Conference on
Learning Representations (ICLR), 2017.

[2] K. Liu, Y. Yang, W. Zhang, and H. Liu, "A Graph Convolutional
Neural Network-based Method for Short-term Photovoltaic Power
Forecasting," in Proc. 2020 IEEE International Conference on Smart
Grid and Clean Energy Technologies (ICSGCE), pp. 304-309, 2020

[3] Peter J. Huber. "Robust Estimation of a Location Parameter." Ann.
Math. Statist. 35 (1) 73 - 101, March, 1964.

[4] M. N. Bernstein, "Graph Convolutional Neural Networks," Personal
Blog, 24 September 2023.

[5]1 J. Brownlee, "A Gentle Introduction to the Rectified Linear Unit
(ReLU)," Machine Learning Mastery, 8 January 2019.

[6] D. Liu, "A Practical Guide to ReLU," Medium, 30 November 2017.

[77 M. Zhang and Z. Yang, "GACOforRec: Session-Based Graph
Convolutional Neural Networks Recommendation Model," [EEE
Access, vol. 7, pp. 114077-114085, 2019.

[8] P. Zhang, F. Yan, and C. Du, "A comprehensive analysis of energy
management strategies for hybrid electric vehicles based on
bibliometrics," Renewable and Sustainable Energy Reviews, vol. 48,
pp. 88-104, 2015.

[9] Solis EV4, Solis UTCN. https://solis.utcluj.ro/en/articles?id=7

[10] T. Chai and R. R. Draxler, "Root mean square error (RMSE) or mean
absolute error (MAE)?," Geoscientific Model Development
Discussions, vol. 7, pp. 1525-1534,2014

