
Volume 62, Number 1, 2025 
 

© 2025 – Mediamira Science Publisher 

Graphical Convolutional Networks Based 
Regenerative Brake Energy Prediction System for 

solar-powered electric vehicles   

 
Lungu Ioan Stelian  

Faculty of Industrial Engineering, Robotics and Production Management 
Cluj-Napoca, Romania 

lungu.ho.ioan@student.utcluj.ro 

Abstract— This study presents an innovative approach for 
predicting regenerative braking energy in solar vehicles using 
Graphical Convolutional Networks (GCNs). The proposed system 
focuses on the Solis EV4 solar vehicle, using vehicle parameters to 
forecast the potential for energy regeneration during braking 
events. A key contribution is the automated preprocessing 
methodology for manipulating mixed-sign parameters in vehicle 
data. The design implements a multi-layer GCN architecture that 
processes temporal sequences of vehicle data to provide real-time 
predictions. The results demonstrate exceptional accuracy, with an 
R2 score of 0.9977 and an RMSE error of 0.0367 kW, validating the 
effectiveness of the proposed approach.  
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I. INTRODUCTION  

Networks Artificial intelligence (AI) has become an 
essential technology in many areas, from image and speech 
recognition to natural language processing and decision-
making. One of the most important branches of AI is deep 
learning, which focuses on developing algorithms that can 
learn and adapt from experience [3]. One of the key concepts 
in deep learning is data representation. In many cases, data can 
be represented in the form of graphs, which are data structures 
composed of vertices and edges. Graphs can be used to 
represent complex relationships between objects, such as 
social networks, transport networks, or molecular structures.  

Graph Convolutional Network (GCN) are a class of deep 
learning models specifically designed to process structured 
data in the form of graphs. GCNs were introduced as an 
extension of convolutional neural networks (CNNs), which 
are very effective for Euclidean data such as images or text. 
However, CNNs cannot directly process graph structures, 
which require a special approach [1],[2]. 

GCNs work by propagating and aggregating information 
between graph vertices, allowing the model to learn 
representations that capture both the local properties of the 
vertices and the overall structure of the graph. This capability 
makes them particularly useful in applications where 
relationships and interdependencies between components are 
crucial to solving the problem. One such field is that of electric 
and solar vehicles, where numerous parameters – from 
operating conditions and battery status to route characteristics 
– interact in complex ways to determine system performance 
[4],[5]. 

In particular, the accurate prediction of regenerative 
energy recoverable by braking is a significant challenge, as it 
depends on multiple interdependent variables that can be 
naturally modeled as a graph. The vertices of this graph can 
represent different parameters of the vehicle, and the edges 
can shape the relationships and influences between these 
parameters. [1], [2] 

II. DATA PREPROCESSING AND EXPERIMENTAL 

SETUP 

The dataset used in this study was collected during the 
ILUMEN 2024 solar car competition in Belgium, specifically 
from the Solis EV4 vehicle of the Technical University of 
Cluj-Napoca (UTCN) team. The Solis EV4 is the latest and 
most efficient solar vehicle developed by the Solis team, 
incorporating numerous improvements over previous models 
[6]. 

The collected dataset comprises multiple vehicle 
performance parameters, measured and recorded directly from 
the Solis EV4 during the competition runs. These include 
fundamental electrical parameters (bus voltage and current), 
drivetrain data (motor speed), dynamic measurements 
(vehicle speed and distance traveled), and critical energy 
metrics (power consumption and regeneration, energy 
consumption per kilometer). Together, these parameters 
create a detailed representation of the solar vehicle's behavior 
and energy management during actual racing conditions[4], 
[6]. 

A. Data Preprocessing 

To ensure that the data is in a format suitable for training 
the GCN model, we have pre-processed it in such a way that 
there are no negative values. The reasons for this decision are: 

 Data Normalization: I used MinMaxScaler to 
normalize the data, ensuring that all features are 
on the same scale. Normalization contributes to 
the stability of the training and helps to converge 
the model faster [9]. 

 Elimination of Negative Values: The separation 
of positive and negative components allows the 
model to identify specific patterns and 
independently analyze the behavior of each 
component. This approach improves the ability 
to generalize and provides a deeper 
understanding of the relationships between 
parameters. Components. 
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 Model Architecture: The model uses 5 active 
GCNConv layers. Which convolutional layers 
are activated by the ReLU function for each 
layer.Dropout (0.) is included for regularization 
and prevention of model overfitting. 

In addition to normalization, we've introduced new 
features to improve the model's ability to learn relationships 
between vehicle parameters. New features include. 

data['power_ratio'] = data['Power_Consumption_kW'] / 
(data['Power_Regeneration_kW'] +  1e-6)   
data['velocity_ratio'] = data['MC_MotorVelocity_pos'] / 
(data['MC_MotorVelocity_neg'] +  1e-6) 
data['current_ratio'] = data['MC_BusCurrent_pos'] / 
(data['MC_BusCurrent_neg'] +  1e-6)   

Fig. 1.  Feature Engineering Example  

B. Data Splitting 

For training and evaluation of the model, dataset was 
divided into 2 main parts: 80% of total data was allocated 
fortraining and validation process, and remaining 20% was 
reserved for final testing. From 80% allocated to training, an 
additional subdivision was made into training data (80%) and 
validation data (20%), using the following code: 

train_split = int(0.8 * len(x)) 
x_train, x_test = x[:train_split], x[train_split:] 
y_train, y_test = y[:train_split], y[train_split:] 

 
Fig. 2.  Data Splitting 

The remaining 20% of total dataset was kept separate and 
unused during training and validation process. This dataset 
serves exclusively for the final evaluation of the model, 
simulating real-world scenarios where the model needs to 
make predictions on completely new and unknown data. This 
approach allows us to accurately assess the model's actual 
generalizability and robustness under practical conditions of 
use. 

TABLE I.  DATA PROCESSED  

time 2024-09-202024-09-202024-09-202024-09-202024-09-202024-09-202024-09-202024-09-202024-09-202024-09-202024-09-20T14:31:02.014019Z
MC_BusVoltage 134.2277 134.23 134.2438 134.2384 134.2399 134.2373 134.2407 134.2384 134.2395 134.2419 134.2386
time_diff 0.185762 0.067141 0.294513 0.198996 0.049928 0.410612 0.193648 0.013602 0.237771 0.386892 0.048419
Power_Consumption_kW 0 0 0 0 0.024611 0.025112 0.024163 0.024246 0.023173 0 0.000214
Power_Regeneration_kW 0 0 0 0 0 0 0 0 0 0.056799 0
Energy_Consumption_kWh 0 0 0 0 3.41E-07 2.86E-06 1.30E-06 9.16E-08 1.53E-06 0 2.87E-09
Energy_Regeneration_kWh 0 0 0 0 0 0 0 0 0 6.10E-06 0
Vehicle_Speed_mps 0.29249 0.292146 0.287143 0.287753 0.283804 0.30283 0.323581 0.345927 0.369397 0.391513 0.433936
Vehicle_Speed_kph 1.052963 1.051726 1.033716 1.03591 1.021696 1.090186 1.164892 1.245339 1.329829 1.409448 1.562171
Distance_km 5.43E-05 1.96E-05 8.46E-05 5.73E-05 1.42E-05 0.000124 6.27E-05 4.71E-06 8.78E-05 0.000151 2.10E-05
Consumption_per_km 0 0 0 0 0.024089 0.023035 0.020742 0.01947 0.017426 0 0.000137
MC_BusCurrent_pos 0 0 0 0 0.183338 0.187075 0.179994 0.18062 0.172627 0 0.001591
MC_BusCurrent_neg 0 0 0 0 0 0 0 0 0 0.423108 0
MC_MotorVelocity_pos 0 0 0 0 0 0 0 0 0 0 0  

III. METHOLOGY  

Graph Convolutional Networks have achieved promising 
results in various areas of machine learning, especially the 
processing of structured data in the form of graphs [1], [2]. In 
the next part we will expose the approach of implementing 

GCN to make predictions of regenerative energy in electric 
vehicles [7]. 

The architecture of the implemented model is presented in 
Fig. 3, highlighting the flow of information through the 
network. Starting from the input features, the data passes 
through five GCN layers that perform convolution operations 
combined with ReLU activation and dropout mechanisms [1], 
[3]. A fully connected layer processes the final GCN layer's 
output to generate the regenerative energy prediction [7]. 

 

 
Fig. 3.  GCN Model Architecture  

The GCN model is structured in 3 main components: 

A. Layers of Input 

The input layer is responsible for processing the 17 
features that were obtained by preprocessing the data, 
described in Chapter 2, and which includes a combination of 
the original parameters and features derived by feature 
engineering. 

B. Layers GCN Layers of Input 

The architecture includes 5 consecutive GCN layers, each 
implementing the following fundamental operation: 

 𝐻௟ାଵ ൌ 𝜎൫𝐷̃ି ଵ/ଶÃ𝐷̃ିଵ/ଶ𝐻௟𝑊௟൯ (1) 
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Equation (1) represents the core mathematical operation 
performed in each Graph Convolutional Network (GCN) 
layer. Here, H^(l+1) denotes the feature matrix of the next 
layer, while H^l represents the current layer's features. The 
matrix Ã is the adjacency matrix with added self-connections, 
describing how nodes in the graph are connected. D̃ is the 
degree matrix derived from Ã, and its negative square root 
D̃^(-1/2) serves as a normalization factor. W^l represents the 
learnable weight matrix for the current layer, and σ is a non-
linear activation function, typically ReLU. This operation 
effectively aggregates information from neighboring nodes 
while maintaining the graph's structural properties. The 
normalization term D̃^(-1/2) prevents the scaling of feature 
vectors from varying too much across nodes with different 
degrees, ensuring stable training. Through this operation, each 
node updates its features by considering both its own 
information and the weighted influence of its neighbors, 
enabling the network to learn increasingly complex graph-
level representations [1]. 

Layers are configured with a hidden size of 256 units for 
each layer, Dropout of 0.3 between layers for regularization, 
and ReLU activation after each convolutional layer. To 
improve the learning process, we have implemented the Huber 
Loss cost function, which provides an optimal compromise 
between Mean Squared Error (MSE) and Mean Absolute 
Error (MAE). This feature is more robust to outliers compared 
to MSE and offers more stable gradients than MAE. The 
Huber Loss formula is defined as follows: 

 𝐿ఋሺ𝑎ሻ ൌ ቊ 
ఋቀ|௫|ି

భ
మఋቁ,        ௜௙ |௫|வఋ,

భ
మ௫

మ,                     ௜௙ |௫|ஸఋ,
ቋ (2) 

Where δ is the parameter that controls the transition 
between quadratic (for small errors) and linear (for large 
errors) behavior. In our implementation, we chose δ = 0.7 
based on empirical experiments that showed the best 
compromise between training stability and prediction 
accuracy[11]. 

C. Stratul de Outpu  

The final layer consists of a linear transformation that 
produces the prediction for regenerative energy, using a linear 
activation function. Optimization is performed using the 
AdamW algorithm with adaptive learning rate: 

 𝜃௧ ൌ 𝜃௧ିଵ െ 𝛼 ∗ 𝑚௧/൫ඥ𝑣௧ ൅ 𝜀൯ െ 𝜆 ∗ 𝜃௧ିଵ  (3) 

Where θ_t is the parameters at step t, α is the learning rate 
(initially set to 0.01), m_t and v_t are the first- and second-
order moments, and λ is the weight decay factor (1e-4).        
The learning rate is dynamically adjusted using a 
ReduceLROnPlateau scheduler with a waiting period of 50 
epochs and a reduction factor of 0.1, which allows the model 
to find better local minimums as the training progresses [10]. 

D. Implement model 

The implementation is carried out in PyTorch Geometric, 
using the following structure that allows efficient processing 
of data in the form of a graph and the application of 
convolution operations [1]. The model's architecture is 
implemented in a class that inherits torch.nn.Module, 
providing flexibility in parameter management and data 

forward propagation [2]. The following code shows the basic 
structure of the implementation: 

class GCN(torch.nn.Module): 
    def __init__(self, input_dim, hidden_dim, output_dim): 
        super(GCN, self).__init__() 
        self.conv1 = GCNConv(input_dim, hidden_dim) 
        self.conv2 = GCNConv(hidden_dim, hidden_dim) 
        self.conv3 = GCNConv(hidden_dim, hidden_dim)   
        self.conv4 = GCNConv(hidden_dim, hidden_dim)  
        self.conv5 = GCNConv(hidden_dim, hidden_dim)   
        self.fc = torch.nn.Linear(hidden_dim, output_dim) 
        self.dropout = torch.nn.Dropout(0.4) 
    def forward(self, x, edge_index): 
        x = self.conv1(x, edge_index).relu() 
        x = self.dropout(x) 
        x = self.conv2(x, edge_index).relu() 
        x = self.dropout(x) 
        x = self.conv3(x, edge_index).relu() 
        x = self.dropout(x) 
        x = self.conv4(x, edge_index).relu() 
        x = self.dropout(x) 
        x = self.conv5(x, edge_index).relu() 
        x = self.dropout(x) 
        x = self.fc(x) 
        return x 

 
Fig. 4.  Model implementation 

The figure below illustrates the process of information 
propagation in a GCN network, which consists of three main 
steps: Feature Propagation, Linear Transformation and 
Nonlinearity. The model initially receives an input graph, 
where each vertex is represented by a feature vector. At each 
GCN layer, information is propagated between the connected 
nodes by filling the feature matrix with a normalized 
adjacency matrix, facilitating the exchange of information 
between neighbors. Then, a linear transformation is applied by 
supplementing with an array of trainable weights, followed by 
a ReLU activation to introduce nonlinearity. This process is 
iterated over K-1 times, where K is the total number of layers 
of the model. Finally, the predictions are generated by 
applying a softmax function to the final representations of the 
vertices. This approach allows for efficient propagation of 
information in the GCN grid and is used in this model to 
improve the prediction of regenerative energy in electric 
vehicles [1], [7]. 

 
Fig. 5.  Propagation of information in a Graph Convolutional Network  
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IV. EXPERIMENTS 

This section presents the experimental results obtained 
from the implementation and evaluation of the GCN model 
for the prediction of regenerative energy in electric vehicles. 
The experiments were carried out using data collected during 
the competition in Belgium, divided into training set (80%) 
and test set (20%) 

A. Experimental Setup  

To evaluate the model's performance, we used three 
standard metrics in regression problem: 

 MAE (Mean Absolute Error): measures the 
average of absolute errors [12]. 

 
ଵ

௡
∑ |𝑦௜ െ 𝑦ො௜|
௡
௜ୀଵ  

 RMSE (Root Mean Squared Error): measures 
the square root of the mean of the square errors 
[12].  

 ට
ଵ

௡
∑ ሺ𝑦௜ െ 𝑦ො௜ሻଶ௡
௜ୀଵ  

 R² Score: indicates the proportion of the variance 
of the dependent variable that is predictable from 
the independent variable 

 1െ
∑ ሺ௬೔ି௬ො೔ሻ
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 

B. Experimental Setup  

The model was trained for 250 epochs, showing consistent 
improvement in performance throughout the training process. 
The training loss evolved from an initial value of 0.0776 at 
epoch 10 to a final value of 0.0092 at epoch 250, 
demonstrating stable convergence. Significant improvements 
were observed in the early stages of training, particularly 
between epochs 20 and 40, where the loss decreased from 
0.0739 to 0.0173, indicating rapid learning of the underlying 
patterns in the data.  

 
Fig. 6.  Training Loss Evolution over 250 Epochs  

C. Results and Analysis 

TABLE II.  GCN MODEL PERFORMANCE 

Metric Training Set(80%) Testing Set(20%) 
MAE 0.0143 2.1699 
RMSE 0.0367 2.3250 
R² Score 0.9977 -8.5345 

The experimental results are presented in Table 2, which 
compares the performance of the model on the drive set and 
on the test set. 

On the test set, we see a significant degradation in the 
model's performance, which raises questions about its ability 
to generalize. A negative R² score of -8.5345 indicates that the 
model fails to explain the variability of the data. Also, the 
prediction errors, measured by MAE (2.1699) and RMSE 
(2.3250), are significantly higher than on the training set, 
which highlights a problem of generalization of the model, 
which fails to maintain the same level of performance when 
applied to new and unknown data. 

 
Fig. 7. True vs Predicted: Power Regeneration (Training) 

On the test set, we see a significant degradation in the 
model's performance, which raises questions about its ability 
to generalize. A negative R² score of -8.5345 indicates that the 
model fails to explain the variability of the data. Also, the 
prediction errors, measured by MAE (2.1699) and RMSE 
(2.3250), are significantly higher than on the training set, 
which highlights a problem of generalization of the model, 
which fails to maintain the same level of performance when 
applied to new and unknown data. 

 
Fig. 8. True vs Predicted: Power Regeneration (Testing)  

V. CONCLUSION 

In this study, we developed a Graph Convolutional 
Network (GCN) artificial intelligence model for predicting 
Power_Regeneration_kW values. The model was trained and 
tested using an EV-specific dataset, and its performance was 
evaluated by standard metrics. 

The results obtained indicate that the model effectively 
learned the relationships from the training set, obtaining an R² 
Score of 0.9977, which shows that it explains 99.81% of the 
variability of the real data. Also, the errors of the MFA 
(0.0143) and RMSE (0.0367) are very small, confirming that 
the predictions are extremely close to the real values. 

However, the evaluation on unknown data revealed a 
significantly worse performance, with the model obtaining a 
negative R² Score (-8.5345), and the MAE (2.1699) and 
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RMSE (2.3250) errors being considerably higher. This 
suggests that the current architecture cannot make reliable 
predictions in new scenarios, possibly due to the lack of 
additional relevant features such as GPS data, which could 
give the model a clear reference point based on location and 
route [7], [8]. 
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