
Volume 62, Number 1, 2025

© 2025 – Mediamira Science Publisher

Graphical Convolutional Networks Based
Regenerative Brake Energy Prediction System for

solar-powered electric vehicles

Lungu Ioan Stelian

Faculty of Industrial Engineering, Robotics and Production Management
Cluj-Napoca, Romania

lungu.ho.ioan@student.utcluj.ro

Abstract— This study presents an innovative approach for
predicting regenerative braking energy in solar vehicles using
Graphical Convolutional Networks (GCNs). The proposed system
focuses on the Solis EV4 solar vehicle, using vehicle parameters to
forecast the potential for energy regeneration during braking
events. A key contribution is the automated preprocessing
methodology for manipulating mixed-sign parameters in vehicle
data. The design implements a multi-layer GCN architecture that
processes temporal sequences of vehicle data to provide real-time
predictions. The results demonstrate exceptional accuracy, with an
R2 score of 0.9977 and an RMSE error of 0.0367 kW, validating the
effectiveness of the proposed approach.

Keywords— graphical convolutional networks, artificial
intelligence, machine learning, electric vehicle regenerative
braking

I. INTRODUCTION

Networks Artificial intelligence (AI) has become an
essential technology in many areas, from image and speech
recognition to natural language processing and decision-
making. One of the most important branches of AI is deep
learning, which focuses on developing algorithms that can
learn and adapt from experience [3]. One of the key concepts
in deep learning is data representation. In many cases, data can
be represented in the form of graphs, which are data structures
composed of vertices and edges. Graphs can be used to
represent complex relationships between objects, such as
social networks, transport networks, or molecular structures.

Graph Convolutional Network (GCN) are a class of deep
learning models specifically designed to process structured
data in the form of graphs. GCNs were introduced as an
extension of convolutional neural networks (CNNs), which
are very effective for Euclidean data such as images or text.
However, CNNs cannot directly process graph structures,
which require a special approach [1],[2].

GCNs work by propagating and aggregating information
between graph vertices, allowing the model to learn
representations that capture both the local properties of the
vertices and the overall structure of the graph. This capability
makes them particularly useful in applications where
relationships and interdependencies between components are
crucial to solving the problem. One such field is that of electric
and solar vehicles, where numerous parameters – from
operating conditions and battery status to route characteristics
– interact in complex ways to determine system performance
[4],[5].

In particular, the accurate prediction of regenerative
energy recoverable by braking is a significant challenge, as it
depends on multiple interdependent variables that can be
naturally modeled as a graph. The vertices of this graph can
represent different parameters of the vehicle, and the edges
can shape the relationships and influences between these
parameters. [1], [2]

II. DATA PREPROCESSING AND EXPERIMENTAL

SETUP

The dataset used in this study was collected during the
ILUMEN 2024 solar car competition in Belgium, specifically
from the Solis EV4 vehicle of the Technical University of
Cluj-Napoca (UTCN) team. The Solis EV4 is the latest and
most efficient solar vehicle developed by the Solis team,
incorporating numerous improvements over previous models
[6].

The collected dataset comprises multiple vehicle
performance parameters, measured and recorded directly from
the Solis EV4 during the competition runs. These include
fundamental electrical parameters (bus voltage and current),
drivetrain data (motor speed), dynamic measurements
(vehicle speed and distance traveled), and critical energy
metrics (power consumption and regeneration, energy
consumption per kilometer). Together, these parameters
create a detailed representation of the solar vehicle's behavior
and energy management during actual racing conditions[4],
[6].

A. Data Preprocessing

To ensure that the data is in a format suitable for training
the GCN model, we have pre-processed it in such a way that
there are no negative values. The reasons for this decision are:

 Data Normalization: I used MinMaxScaler to
normalize the data, ensuring that all features are
on the same scale. Normalization contributes to
the stability of the training and helps to converge
the model faster [9].

 Elimination of Negative Values: The separation
of positive and negative components allows the
model to identify specific patterns and
independently analyze the behavior of each
component. This approach improves the ability
to generalize and provides a deeper
understanding of the relationships between
parameters. Components.

12 ACTA ELECTROTEHNICA

 Model Architecture: The model uses 5 active
GCNConv layers. Which convolutional layers
are activated by the ReLU function for each
layer.Dropout (0.) is included for regularization
and prevention of model overfitting.

In addition to normalization, we've introduced new
features to improve the model's ability to learn relationships
between vehicle parameters. New features include.

data['power_ratio'] = data['Power_Consumption_kW'] /
(data['Power_Regeneration_kW'] + 1e-6)
data['velocity_ratio'] = data['MC_MotorVelocity_pos'] /
(data['MC_MotorVelocity_neg'] + 1e-6)
data['current_ratio'] = data['MC_BusCurrent_pos'] /
(data['MC_BusCurrent_neg'] + 1e-6)

Fig. 1. Feature Engineering Example

B. Data Splitting

For training and evaluation of the model, dataset was
divided into 2 main parts: 80% of total data was allocated
fortraining and validation process, and remaining 20% was
reserved for final testing. From 80% allocated to training, an
additional subdivision was made into training data (80%) and
validation data (20%), using the following code:

train_split = int(0.8 * len(x))
x_train, x_test = x[:train_split], x[train_split:]
y_train, y_test = y[:train_split], y[train_split:]

Fig. 2. Data Splitting

The remaining 20% of total dataset was kept separate and
unused during training and validation process. This dataset
serves exclusively for the final evaluation of the model,
simulating real-world scenarios where the model needs to
make predictions on completely new and unknown data. This
approach allows us to accurately assess the model's actual
generalizability and robustness under practical conditions of
use.

TABLE I. DATA PROCESSED

time 2024-09-202024-09-202024-09-202024-09-202024-09-202024-09-202024-09-202024-09-202024-09-202024-09-202024-09-20T14:31:02.014019Z
MC_BusVoltage 134.2277 134.23 134.2438 134.2384 134.2399 134.2373 134.2407 134.2384 134.2395 134.2419 134.2386
time_diff 0.185762 0.067141 0.294513 0.198996 0.049928 0.410612 0.193648 0.013602 0.237771 0.386892 0.048419
Power_Consumption_kW 0 0 0 0 0.024611 0.025112 0.024163 0.024246 0.023173 0 0.000214
Power_Regeneration_kW 0 0 0 0 0 0 0 0 0 0.056799 0
Energy_Consumption_kWh 0 0 0 0 3.41E-07 2.86E-06 1.30E-06 9.16E-08 1.53E-06 0 2.87E-09
Energy_Regeneration_kWh 0 0 0 0 0 0 0 0 0 6.10E-06 0
Vehicle_Speed_mps 0.29249 0.292146 0.287143 0.287753 0.283804 0.30283 0.323581 0.345927 0.369397 0.391513 0.433936
Vehicle_Speed_kph 1.052963 1.051726 1.033716 1.03591 1.021696 1.090186 1.164892 1.245339 1.329829 1.409448 1.562171
Distance_km 5.43E-05 1.96E-05 8.46E-05 5.73E-05 1.42E-05 0.000124 6.27E-05 4.71E-06 8.78E-05 0.000151 2.10E-05
Consumption_per_km 0 0 0 0 0.024089 0.023035 0.020742 0.01947 0.017426 0 0.000137
MC_BusCurrent_pos 0 0 0 0 0.183338 0.187075 0.179994 0.18062 0.172627 0 0.001591
MC_BusCurrent_neg 0 0 0 0 0 0 0 0 0 0.423108 0
MC_MotorVelocity_pos 0 0 0 0 0 0 0 0 0 0 0

III. METHOLOGY

Graph Convolutional Networks have achieved promising
results in various areas of machine learning, especially the
processing of structured data in the form of graphs [1], [2]. In
the next part we will expose the approach of implementing

GCN to make predictions of regenerative energy in electric
vehicles [7].

The architecture of the implemented model is presented in
Fig. 3, highlighting the flow of information through the
network. Starting from the input features, the data passes
through five GCN layers that perform convolution operations
combined with ReLU activation and dropout mechanisms [1],
[3]. A fully connected layer processes the final GCN layer's
output to generate the regenerative energy prediction [7].

Fig. 3. GCN Model Architecture

The GCN model is structured in 3 main components:

A. Layers of Input

The input layer is responsible for processing the 17
features that were obtained by preprocessing the data,
described in Chapter 2, and which includes a combination of
the original parameters and features derived by feature
engineering.

B. Layers GCN Layers of Input

The architecture includes 5 consecutive GCN layers, each
implementing the following fundamental operation:

 𝐻௟ାଵ ൌ 𝜎൫𝐷̃ି ଵ/ଶÃ𝐷̃ିଵ/ଶ𝐻௟𝑊௟൯ (1)

 Volume 62, Number 1, 2025 13

Equation (1) represents the core mathematical operation
performed in each Graph Convolutional Network (GCN)
layer. Here, H^(l+1) denotes the feature matrix of the next
layer, while H^l represents the current layer's features. The
matrix Ã is the adjacency matrix with added self-connections,
describing how nodes in the graph are connected. D̃ is the
degree matrix derived from Ã, and its negative square root
D̃^(-1/2) serves as a normalization factor. W^l represents the
learnable weight matrix for the current layer, and σ is a non-
linear activation function, typically ReLU. This operation
effectively aggregates information from neighboring nodes
while maintaining the graph's structural properties. The
normalization term D̃^(-1/2) prevents the scaling of feature
vectors from varying too much across nodes with different
degrees, ensuring stable training. Through this operation, each
node updates its features by considering both its own
information and the weighted influence of its neighbors,
enabling the network to learn increasingly complex graph-
level representations [1].

Layers are configured with a hidden size of 256 units for
each layer, Dropout of 0.3 between layers for regularization,
and ReLU activation after each convolutional layer. To
improve the learning process, we have implemented the Huber
Loss cost function, which provides an optimal compromise
between Mean Squared Error (MSE) and Mean Absolute
Error (MAE). This feature is more robust to outliers compared
to MSE and offers more stable gradients than MAE. The
Huber Loss formula is defined as follows:

 𝐿ఋሺ𝑎ሻ ൌ ቊ 
ఋቀ|௫|ି

భ
మఋቁ,        ௜௙ |௫|வఋ,

భ
మ௫

మ,                     ௜௙ |௫|ஸఋ,
ቋ (2)

Where δ is the parameter that controls the transition
between quadratic (for small errors) and linear (for large
errors) behavior. In our implementation, we chose δ = 0.7
based on empirical experiments that showed the best
compromise between training stability and prediction
accuracy[11].

C. Stratul de Outpu

The final layer consists of a linear transformation that
produces the prediction for regenerative energy, using a linear
activation function. Optimization is performed using the
AdamW algorithm with adaptive learning rate:

 𝜃௧ ൌ 𝜃௧ିଵ െ 𝛼 ∗ 𝑚௧/൫ඥ𝑣௧ ൅ 𝜀൯ െ 𝜆 ∗ 𝜃௧ିଵ (3)

Where θ_t is the parameters at step t, α is the learning rate
(initially set to 0.01), m_t and v_t are the first- and second-
order moments, and λ is the weight decay factor (1e-4).
The learning rate is dynamically adjusted using a
ReduceLROnPlateau scheduler with a waiting period of 50
epochs and a reduction factor of 0.1, which allows the model
to find better local minimums as the training progresses [10].

D. Implement model

The implementation is carried out in PyTorch Geometric,
using the following structure that allows efficient processing
of data in the form of a graph and the application of
convolution operations [1]. The model's architecture is
implemented in a class that inherits torch.nn.Module,
providing flexibility in parameter management and data

forward propagation [2]. The following code shows the basic
structure of the implementation:

class GCN(torch.nn.Module):
 def __init__(self, input_dim, hidden_dim, output_dim):
 super(GCN, self).__init__()
 self.conv1 = GCNConv(input_dim, hidden_dim)
 self.conv2 = GCNConv(hidden_dim, hidden_dim)
 self.conv3 = GCNConv(hidden_dim, hidden_dim)
 self.conv4 = GCNConv(hidden_dim, hidden_dim)
 self.conv5 = GCNConv(hidden_dim, hidden_dim)
 self.fc = torch.nn.Linear(hidden_dim, output_dim)
 self.dropout = torch.nn.Dropout(0.4)
 def forward(self, x, edge_index):
 x = self.conv1(x, edge_index).relu()
 x = self.dropout(x)
 x = self.conv2(x, edge_index).relu()
 x = self.dropout(x)
 x = self.conv3(x, edge_index).relu()
 x = self.dropout(x)
 x = self.conv4(x, edge_index).relu()
 x = self.dropout(x)
 x = self.conv5(x, edge_index).relu()
 x = self.dropout(x)
 x = self.fc(x)
 return x

Fig. 4. Model implementation

The figure below illustrates the process of information
propagation in a GCN network, which consists of three main
steps: Feature Propagation, Linear Transformation and
Nonlinearity. The model initially receives an input graph,
where each vertex is represented by a feature vector. At each
GCN layer, information is propagated between the connected
nodes by filling the feature matrix with a normalized
adjacency matrix, facilitating the exchange of information
between neighbors. Then, a linear transformation is applied by
supplementing with an array of trainable weights, followed by
a ReLU activation to introduce nonlinearity. This process is
iterated over K-1 times, where K is the total number of layers
of the model. Finally, the predictions are generated by
applying a softmax function to the final representations of the
vertices. This approach allows for efficient propagation of
information in the GCN grid and is used in this model to
improve the prediction of regenerative energy in electric
vehicles [1], [7].

Fig. 5. Propagation of information in a Graph Convolutional Network

14 ACTA ELECTROTEHNICA

IV. EXPERIMENTS

This section presents the experimental results obtained
from the implementation and evaluation of the GCN model
for the prediction of regenerative energy in electric vehicles.
The experiments were carried out using data collected during
the competition in Belgium, divided into training set (80%)
and test set (20%)

A. Experimental Setup

To evaluate the model's performance, we used three
standard metrics in regression problem:

 MAE (Mean Absolute Error): measures the
average of absolute errors [12].

ଵ

௡
∑ |𝑦௜ െ 𝑦ො௜|
௡
௜ୀଵ  

 RMSE (Root Mean Squared Error): measures
the square root of the mean of the square errors
[12].

 ට
ଵ

௡
∑ ሺ𝑦௜ െ 𝑦ො௜ሻଶ௡
௜ୀଵ 

 R² Score: indicates the proportion of the variance
of the dependent variable that is predictable from
the independent variable

 1െ
∑ ሺ௬೔ି௬ො೔ሻ

మ೙
೔సభ

∑ ሺ௬೔ି௬തሻమ
೙
೔సభ

 

B. Experimental Setup

The model was trained for 250 epochs, showing consistent
improvement in performance throughout the training process.
The training loss evolved from an initial value of 0.0776 at
epoch 10 to a final value of 0.0092 at epoch 250,
demonstrating stable convergence. Significant improvements
were observed in the early stages of training, particularly
between epochs 20 and 40, where the loss decreased from
0.0739 to 0.0173, indicating rapid learning of the underlying
patterns in the data.

Fig. 6. Training Loss Evolution over 250 Epochs

C. Results and Analysis

TABLE II. GCN MODEL PERFORMANCE

Metric Training Set(80%) Testing Set(20%)
MAE 0.0143 2.1699
RMSE 0.0367 2.3250
R² Score 0.9977 -8.5345

The experimental results are presented in Table 2, which
compares the performance of the model on the drive set and
on the test set.

On the test set, we see a significant degradation in the
model's performance, which raises questions about its ability
to generalize. A negative R² score of -8.5345 indicates that the
model fails to explain the variability of the data. Also, the
prediction errors, measured by MAE (2.1699) and RMSE
(2.3250), are significantly higher than on the training set,
which highlights a problem of generalization of the model,
which fails to maintain the same level of performance when
applied to new and unknown data.

Fig. 7. True vs Predicted: Power Regeneration (Training)

On the test set, we see a significant degradation in the
model's performance, which raises questions about its ability
to generalize. A negative R² score of -8.5345 indicates that the
model fails to explain the variability of the data. Also, the
prediction errors, measured by MAE (2.1699) and RMSE
(2.3250), are significantly higher than on the training set,
which highlights a problem of generalization of the model,
which fails to maintain the same level of performance when
applied to new and unknown data.

Fig. 8. True vs Predicted: Power Regeneration (Testing)

V. CONCLUSION

In this study, we developed a Graph Convolutional
Network (GCN) artificial intelligence model for predicting
Power_Regeneration_kW values. The model was trained and
tested using an EV-specific dataset, and its performance was
evaluated by standard metrics.

The results obtained indicate that the model effectively
learned the relationships from the training set, obtaining an R²
Score of 0.9977, which shows that it explains 99.81% of the
variability of the real data. Also, the errors of the MFA
(0.0143) and RMSE (0.0367) are very small, confirming that
the predictions are extremely close to the real values.

However, the evaluation on unknown data revealed a
significantly worse performance, with the model obtaining a
negative R² Score (-8.5345), and the MAE (2.1699) and

 Volume 62, Number 1, 2025 15

RMSE (2.3250) errors being considerably higher. This
suggests that the current architecture cannot make reliable
predictions in new scenarios, possibly due to the lack of
additional relevant features such as GPS data, which could
give the model a clear reference point based on location and
route [7], [8].

ACKNOWLEDGMENT

I would like to express my sincere gratitude to Solis UTCN
project and Solis team for granting access to their valuable
competition database. This research would not have been
possible without their willingness to share data collected
during ILUMEN 2024 solar car competition. The
comprehensive dataset from Solis EV4 vehicle provided the
foundation for developing and validating GCN-based
regenerative brake energy prediction system presented in this
paper.

I am also grateful to open-source community for
developing and maintaining the tools and frameworks that
made this research possible. Their contributions to the field of
machine learning, particularly in the development of Graph
Convolutional Networks, have been invaluable for this work.

REFERENCES
[1] T. N. Kipf and M. Welling, "Semi-Supervised Classification with

Graph Convolutional Networks," in International Conference on
Learning Representations (ICLR), 2017.

[2] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, "Graph neural networks: A review of methods and
applications," AI Open, vol. 1, pp. 57-81, 2020.

[3] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol.
521, no. 7553, pp. 436-444, 2015.

[4] M. Hannan, M. S. H. Lipu, A. Hussain, and A. Mohamed, "A review
of lithium-ion battery state of charge estimation and management
system in electric vehicle applications: Challenges and
recommendations," Renewable and Sustainable Energy Reviews, vol.
78, pp. 834-854, 2017.

[5] P. Zhang, F. Yan, and C. Du, "A comprehensive analysis of energy
management strategies for hybrid electric vehicles based on
bibliometrics," Renewable and Sustainable Energy Reviews, vol. 48,
pp. 88-104, 2015.

[6] B. Wang, J. Xu, B. Cao, and X. Zhou, "A novel multimode hybrid
energy storage system and its energy management strategy for electric
vehicles," Journal of Power Sources, vol. 281, pp. 432-443, 2015.

[7] Z. Chen, B. Xu, M. Wang, and H. Li, "Regenerative Braking System
Optimization Using Artificial Neural Networks in Electric Vehicles,"
Energy Conversion and Management, vol. 230, 113796, 2021.

[8] L. Li, X. Yan, W. Wang, and Z. Wang, "Deep Learning for Energy
Management in Electric Vehicles: A Comprehensive Review," IEEE
Access, vol. 9, pp. 51023-51040, 2021.

[9] F. Pedregosa et al., "Scikit-learn: Machine Learning in Python,"
Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

[10] I. Loshchilov and F. Hutter, "Decoupled Weight Decay
Regularization," in International Conference on Learning
Representations (ICLR), 2019.

[11] P. J. Huber, "Robust Estimation of a Location Parameter," The Annals
of Mathematical Statistics, vol. 35, no. 1, pp. 73-101, 1964.

[12] T. Chai and R. R. Draxler, "Root mean square error (RMSE) or mean
absolute error (MAE)?," Geoscientific Model Development
Discussions, vol. 7, pp. 1525-1534, 2014.

