ACTA ELECTROTEHNICA

Graph Neural Network Model for Predicting
Electric Vehicle Battery Voltage

Volcov Sabina
Faculty of Computer Science
Technical University of Cluj-Napoca
Cluj-Napoca, Romania
volcov.vl.sabina@student.utcluj.ro

Abstract— The aim of this paper is to present a solution for
battery voltage estimation in solar-powered electric vehicles based
on electrical signals collected from the motor controller,
thermistors and solar panel cells. This study proposes a Graph
Neural Network (GNN) model to accurately predict the battery’s
health in terms of voltage. The model leverages the interconnected
nature of sensor data to capture complex relationships, offering a
robust approach for real-time estimation. Experimental results
highlight the effectiveness of the proposed method in improving
both prediction accuracy and generalization across various
conditions.

Keywords—graph neural network, artificial intelligence,
machine learning, electric vehicle, battery voltage prediction

I. INTRODUCTION

Artificial Intelligence (AI) has been extensively used to
optimize performance, enhance decision-making and improve
efficiency across various engineering domains, including
robotics [1], smart home systems [2] and renewable energy
technologies [3]. In the transportation sector, Al-driven
models are integral to energy management and performance
optimization, particularly in the advancement of sustainable
mobility solutions [4].

In the context of solar-powered electric vehicles, real-time
monitoring of system components and the selection of optimal
driving strategies are critical for maximizing energy
efficiency and ensuring overall functionality. A major
challenge in this field lies in the effective management of
battery load based on continuous electrical sensor readings,
which helps optimize energy consumption. To address this
issue, Machine Learning (ML) techniques can be employed to
develop predictive models for motor efficiency and battery
health estimation. However, traditional models often struggle
to capture the intricate and dynamic relationships between
electrical inputs and battery performance.

This study presents a solution for battery voltage
estimation by implementing and evaluating a Graph Neural
Network (GNN) model that utilizes motor controller data,
alongside battery pack measurements from thermistors and
solar cells, to predict battery voltage with the lowest possible
errors. GNNs are particularly well-suited for this application
due to their capability to model graph-structured data, making
them an effective framework for learning from time-
dependent sensor data in electric vehicle systems.

II. RELATED WORK

Many approaches have been explored for performance
optimization in energy systems. Traditional methods, such as
Naive Bayes [5], k-NN [6] or direct mathematical formulae
[7] work well on small datasets with few features, but fail to

Lungu loan Stelian
Faculty of Industrial Engineering, Robotics and Production
Management
Technical University of Cluj-Napoca
Cluj-Napoca, Romania
lungu.ho.ioan@student.utcluj.ro

capture the relationships that inevitably appear between some
of the input data. Recent advancements in deep learning have
shown promise in addressing these limitations. However,
these models typically assume grid-like or sequential data
structures, which may not fully represent the interconnected
nature of sensor data in electric vehicles.

Graph Neural Networks (GNNs) have emerged as a
powerful alternative for modeling such relational data. GNNs
have been successfully applied in social network analysis,
molecular property prediction, and recommendation systems
[8]. Their ability to capture dependencies between nodes in a
graph makes them particularly suitable for sustainable solar-
powered systems, where sensor data can be naturally
represented as a graph of interconnected components.

Some studies already attempted to integrate the GNNs
complexity in solar power prediction, primarily focusing on
meteorological data such as temperature, humidity and solar
irradiance to improve forecasting accuracy [9]. In response,
recent work has aimed to develop more comprehensive
models by incorporating satellite cloud maps, real-time cloud
tracking and ground sensors. This more extensive data web
provides a better understanding of how atmospheric
conditions evolve over time and how they influence solar
power output [10]. Other papers focused on fault diagnosis by
monitoring current and voltage production of photovoltaic
systems [11].

The experimental results show that these new GNN
models achieve high prediction accuracy and strong
robustness, demonstrating better generalization ability in
varying conditions. Additionally, they offer higher
computational efficiency compared to older forecasting
methods. Overall, this data-driven, Al-powered approach
represents a promising direction toward maximizing solar
power potential and enabling a cleaner, more sustainable
energy future.

III. METHODOLOGY

A. GNN model

The architecture used in this paper is a Graph Neural
Network (GNN), a machine learning architecture designed to
process data interpretable in the form of a graph. Unlike
traditional neural networks that operate on grid-like
structures, such as images or sequences, GNNs employ
representations using nodes and edges to model relationships
between interconnected entities [8].

a) GNN Input Representation
The input to the GNN consists of a feature matrix X€ERNF,
where N represents the number of time steps (or nodes in the

Volume 62, Number 1, 2025 17

graph) and F denotes the number of extracted features. The
features used include:

e Temporal information: the timestamp converted
into elapsed seconds of the day.

e Battery parameters: Dbattery voltage, current,
maximum and minimum cell voltages and cell
temperatures.

e Motor controller readings: voltage and current
values from the direct (Vd, Id) and quadrature (Vq,
Iq) axes of the motor controller.

e Two engineered features: voltage difference (AV)
and power-to-voltage ratio (P/V).

Each row in X represents a sample (or observation) and
each column is a separate attribute (or feature). Since GNNs
typically perform better on positive values, the columns are
split into two: one for the positive part and one for the negative
part. The features are normalized using a MinMaxScaler to
ensure that they are within the same scale (between 0 and 1),
an important operation for neural network, as it helps speed
up convergence and avoids issues caused by some features
dominating the others.

To define the graph structure, an adjacency matrix is
constructed based on temporal connectivity, where each node
(or time step) is connected to its immediate predecessor and
successor, forming a chain-like graph. Self-loops are added to
preserve individual node information during message passing
and ensure the neural network captures the self-interactions of
the data. The graph structure is represented as an edge index
E, stored as a list of connections between nodes.

In each forward pass, the GNN receives both features (X)
and the graph structure to compute predictions, considering all
the relationships between consecutive samples.

b) GNN Layers

The model in this study consists of 5 convolutional layers,
each with 256 hidden dimensions, Rectified Linear Unit
(ReLU) activation function, a Dropout layer, and one fully-
connected layer for the output, as shown in Figure 1. The core
mechanism behind the Graph Neural Network is message
passing, where each node in the graph aggregates information
(messages) from its neighbors to update its representation in
each layer. After a forward pass, the convolutional layers’
output can be formulated as:

HOD= ((TXNXovw(H®, E)), (1)

where H® represents the feature matrix at layer 1, and o is
the activation function, ReLU:

PeAY(E) = pag(0, €) ®)
The formula for the graph convolution being:
FXNXOVG(H(M, E) = ER*H(M*Q(M’ (3)

with A — the normalized adjacency matrix E, and WO —
the matrix of weights for layer 1.

At the end of each forward pass of the entire model, the
loss function is computed and backpropagated to update the
weights on each layer before the next training epoch.

Output
(floating
point value)

Fully-
Connected
Layer
(256x1)

GCNS

GCN4

GCN3

GCN2 Dropout(0.2)

GCNI — ReLU

T T

Input
GCNConv(256)

Fig. 1. Figure 1. GNN achitecture

B. Dataset description

The data used for the task of battery voltage estimation
was collected through the sensors on the Solis racing car
during the iLumen European Solar Challenge 2024
competition, over the course of 8 hours and multiple circuit
laps. The values were stored in an InfluxDB container via
Controller Area Network (CAN) bus communication and
queried in .csv format. The battery can provide at most 160V
(volts) and 21A (ampers), with the values for current and
voltage at any given time measured in millivolts and
milliampers, respectively.

18 ACTA ELECTROTEHNICA

An example of raw entries for the model is the one
depicted in Figure 2:

A B C D E

1| _time BMU_MaxCellVoltage BMU_MinCellVoltage BMU_MaxCellTemperature BMU_MinCellTemperature

2 2024-09-21T11:00:302 3995 3981 3145 30.625

3 |2024-09-21T11:01:002 3985.476351 3966.148649 3140344828 30.64137931

4 2024-09-21T11:01:302 3978.681208 3957.657718 3150666667 30.74

2024-09-21T11:02:002 3966.228669 3937.832765 3168275862 3086551724

2024-09-21T11:02:302 3943.528814 3919.294915 32 31.18666667

2024-09-21T11:03:002 3953.331104 3928.153846 3250333333 3164

8 2024-09-21T11:03:30Z 3968.655518 3945.729097 33.44666667 322

G s H i) 3

BMU_BatteryVoltage BMU_BatteryCurrent MC_vd MC_vg mC_td MC_Ig

151464 1533975 -0.146272764 0.061057508 [0

151078.4155 1766537162 -0.802413148 -13.64069703 -0.001371264 -25.37452793

150919.9732 1349.369128 -1.715431066 -31.67626024 -0.005097031 -9.452121833

150125.6621 541096587 2995743669 -39.53997643 -0.003121631 -16.83894302

149201.78%8 9008.033898 -4.028963288 -44.42477791 -0.002591252 -22.28332517

1496505518 5534598662 2413795819 -38.72312804 -0.003123402 -10.4574506

150274.2341 -589.9598662 -0.017329549 -35.9189457 -0.004050605

6740755414

Fig. 2. Input Example

Therefore, the features used for battery voltage prediction
were: time (converted to seconds during preprocessing),
BMU_MaxCellVoltage (maximum voltage from all the cells,
in millivolts), BMU_MinCellVoltage (minimum voltage from
all the cells, in millivolts), BMU MaxCellTemperature
(maximum temperature on the cells, in °C),
BMU_MinCellTemperature (minimum temperature on the
cells, in °C), BMU_BatteryCurrent (current recorded on the
battery, in milliampers), MC Vd, MC _Vq and MC Id,
MC Iq (the direct and quadratic voltages and currents
recorded on the Motor controller MC), all split into their
positive and negative parts, as well as two new engineered
features: voltage differences and power-to-voltage ratio.

IV. SETUP

A. Training and Optimization

The model was trained over 350 epochs using the AdamW
optimizer with an initial learning rate of 0.001 and weight
decay of 11075, A ReduceLROnPlateau scheduler was added
to adjust the learning rate dynamically based on validation
loss. The most efficient loss function for the battery voltage
estimation task turned out to be Huber Loss, which provides
robustness to outliers in the data.

The Huber Loss function is a combination of the mean
squared error (MSE) and mean absolute error (MAE), with a
threshold 6. It is defined as:

1 .
SO—y~)? ifly-y~< 8

8(ly =y~ - 35), @

ATM(\% \VN) =
otherwise

where y is the true value (ground truth), y~ is the predicted
value and 6 is the threshold that defines the point where the
loss function transitions from quadratic (MSE) to linear
(MAE). In this study, 6 is set to 0.5.

If the error is small, this function behaves like mean
squared error. However, if the error is large, it behaves like
mean absolute error to reduce sensitivity to outliers. This
allows for robust handling of noisy and missing data while
maintaining smoothness near the true values.

For the training of the GNN model, the dataset was split
into 80% training set and 20% testing set, ensuring that edge
connectivity is preserved for both sets. During each epoch,
gradient clipping (max_norm=5.0) was applied to stabilize
updates. Early stopping was implemented based on validation
performance, with the best-performing model checkpoint
saved for final evaluation.

To match the scale of the target values, the final
predictions were rescaled to their original range using the
inverse transformation of the MinMaxScaler, ensuring
accurate interpretation of results.

B. Implementation

The implementation of this model is intended for Python
with PyTorch and Torch geometric to define the necessary
layers. These libraries offer flexibility in designing and
training Al models with various predefined and custom
architectures, for any kind of data. PyTorch provides an
intuitive framework for building neural networks, while Torch
Geometric extends PyTorch by offering specialized tools for
efficiently handling graph structures, performing message
passing in GNNs. Figure 3 presents an example of using
PyTorch to define the model used for this experiment:

import torch
from torch geometric.nn import GCNConv

class GNN(torch.nn.Module) :
def init (self, input_dim, hidden_dim, output_dim):
super (GNN, self). init ()

.convl = GCNConv (input_dim, hidden_dim)
.conv2 = GCNConv (hidden_dim, hidden_dim)
.conv3 = GCNConv (hidden_dim, hidden_dim)
.convd = GCNConv (hidden_dim, hidden_dim)
.conv5 = GCNConv (hidden_dim, hidden dim)

.fc = torch.nn.Linear (hidden dim, output_ dim)
.dropout = torch.nn.Dropout (0.2)

def forward(self, x, edge_index):
X self.convl (x, edge_index).relu()
X f.dropout (x)
x conv2 (x, edge_index).relu()
x dropout (x)
X .conv3(x, edge_index).relu()
X f.dropout (x)
X .convé (x, edge_index) .relu()
X .dropout (x)
x = self.conv5(x, edge_index).relu()
x = self.dropout (x)
x = self.fc(x)
return x

Fig. 3. Example of model definition in PyTorch

To prepare the dataset for use in a Graph Neural Network
(GNN), a structured preprocessing pipeline was followed that
transforms the data in the correct format for the model. The
dataset was originally stored in a .csv file and contained both
positive and negative numerical values. The preprocessing
involves cleaning and structuring the data into a graph format.

a) Libraries used for preprocessing

e pandas: for reading and processing .csv files.
e numpy: for numerical operations such as absolute
values and clipping.
b) Data processing pipeline:

1. Loading the file using pandas.read csv() and
keeping only the numerical columns;

2. Handling negative values by splitting the
columns with both positive and negative values
into two separate ones and the converting the
columns with all negative values to all positive;

3. Structuring data for GNN input by creating a
graph representation where each row represents
a node and relationships are determined based
on timestamps;

4. Constructing the adjacency matrix using the
existing PyTorch functions;

Volume 62, Number 1, 2025 19

5. Converting data to PyTorch Geometric format:
creating a new torch geometric.data.Data
object;

These preprocessing steps ensured that the dataset was
properly formatted for GNN training, with all features
transformed into positive values and the relationships
tbetween them correctly defined.

V. SIMULATION RESULTS

The trained GNN model was assessed using several
regression metrics, as described in Table 1:

TABLE L. SIMULATION RESULTS
Metric Formula(s, 6, 7, 8) Value for the
trained model
Mean Absolute 1w 718.1757
Error (MAE) ZZ lyi = y~il
i=1
Root Mean Squared n 1265.4047
Error (RMSE) 1
n Z @i —y~)?
i=1
R-Squared (R?) 1 0.8496
2
Score X —y~)
i i —¥)?
n
Mean Absolute 100 Vi — Y~i 0.0060
Percentage Error TZ —
(MAPE) = %
where y — true values, y~ - predicted values, ¥ — mean of true values

The mean absolute error shows that the average magnitude
of the differences between the actual and predicted values is
about 718, an acceptable value because of the scale of the
battery voltages, which are calculated in millivolts, and not in
volts. The root mean squared error suggests that the model
occasionally predicts large deviations from the ground truth,
which is normal due to the inherent variations in battery
voltage.

However, the R-squared score is a value close to 1,
meaning that the model explains about 85% of the variance in
the battery voltage predictions. The mean absolute percentage
error is also a strong indicator of good performance,
suggesting that the predictions are extremely accurate when it
comes to the percentage error relative to the true values.

During the 350 epochs of training, the loss decreased, as
illustrated in Figure 4, indicating that the model learned and
improved its predictions over time. The fluctuations in the
graph suggest some periods of instability, but the general
downward trend implies a progress in training.

Loss Evolution Over Epochs

—— Loss

Loss

0 50 100 150 200 250 300 350
Epochs

Fig. 4. Loss evolution during training (logarithmic scale)

The final, best model resulted in predictions very close to
the actual target values, as shown in Figure 5. Although there
are areas where the model might struggle, such deviations are
to be expected and do not undermine the GNN’s general
ability to make accurate estimations.

BMU_BatteryVoltage: True vs Predicted

— True Values
Predicied values

wson] el
\VMAUMVJV'M‘ ffse
WM S,
W -\‘J\/\V"t\.‘,‘

120000

it
VR,
'u

¥

BMU_BatteryVoltage

110000

105000

[1000 2000 200 00 5000 8000
“Time steps

Fig. 5. True values and values predicted by the model

VI. CONCLUSIONS

Graph Neural Networks effectively capture the non-trivial
dependencies between electric vehicle parameters and, unlike
traditional models, can adapt to dynamic, time-varying
electrical conditions, making them suitable for real-time
applications. Leveraging both structural and temporal data,
GNNs enhance prediction accuracy and robustness, ensuring
reliable performance in tasks that involve sensor monitoring.
Their adaptability makes them particularly useful for
optimizing energy management in electric systems.

As a result, GNN-based models offer a promising
approach for improving efficiency and sustainability in
modern transportation systems, especially in solar-powered
electric vehicles.

ACKNOWLEDGMENT

The authors would like to express their sincere gratitude
to the TUCN Solis Solar Racing Team for generously
providing the data used in this research. Their dedication to
advancing sustainable and innovative solar-powered vehicle
technology has been instrumental in this study. Without their
efforts in gathering and maintaining high-quality telemetry
data from the Solis racing car, this work would not have been
possible.

REFERENCES

[1] M. W. Otte, "A survey of machine learning approaches to robotic path-
planning," Department of Computer Science, University of Colorado
at Boulder, Boulder, CO, 2023.

[2] S. Park, "Machine learning-based cost-effective smart home data
analysis and forecasting for energy saving," Buildings, vol. 13, no. 9,
p. 2397, 2023.

[3] V.S.K.Reddy, S. T. Saravanan, N. T. Velusudha, and T. S. Selwyn,
"Smart grid management system based on machine learning algorithms
for efficient energy distribution," E3S Web of Conferences, vol. 387,
p- 02005, 2023.

[4] ,How AI is making electric vehicles safer and more efficient”,
Available: https://www.ibm.com/think/topics/ai-ev-batteries

[5] R.A.Tharakan, R. Joshi, G. Ravindran, and N. Jayapandian, "Machine
learning approach for automatic solar panel direction by using Naive
Bayes algorithm," in Proceedings of the Fifth International Conference
on Intelligent Computing and Control Systems (ICICCS 2021), ISBN:
978-0-7381-1327-2, Bangalore, India, 2021.

20

ACTA ELECTROTEHNICA

[6]

[7

[8]
[9]

N. Uddin, E. Purwanto, and H. Nugraha, "Machine learning based
modeling for estimating solar power generation," 3S Web of
Conferences, vol. 475, p. 03009, 2024.

J. Gallagher and S. Clarke, "Energy-efficient route prediction for solar-
powered vehicles," Green Energy and Intelligent Transportation, vol.
2, no. 1, p. 100063, Feb. 2023.

CS224W: Machine Learning with Graphs, Stanford online, Fall 2024.
Available: https://web.stanford.edu/class/cs224w/index.html

V. Manimegalai, V. Deekshitha, T. Dhivya Shri, D. Harini, V.
Mohanapriya, and A. Elakya, "Graph Neural Networks for Hyper-

[10]

[11]

Accurate Solar Power Forecasting," Proc. 7th Int. Conf. Inventive
Comput. Technol. (ICICT 2024), ISBN: 979-8-3503-5929-9, 2024.

H. Yang, G. Wang, M. Su, J. Liu, and R. Zhang, "Photovoltaic power
generation prediction based on graph neural network and
superimposed satellite cloud images," 2023 IEEE Power and Energy
Conference (POWERCON), Jinan, China, 2023.

J. Van Gompel, D. Spina, and C. Develder, "Cost-effective fault
diagnosis of nearby photovoltaic systems using graph neural
networks," Ghent, Belgium, 2023.

