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Abstract— The aim of this paper is to present a solution for 

battery voltage estimation in solar-powered electric vehicles based 
on electrical signals collected from the motor controller, 
thermistors and solar panel cells. This study proposes a Graph 
Neural Network (GNN) model to accurately predict the battery’s 
health in terms of voltage. The model leverages the interconnected 
nature of sensor data to capture complex relationships, offering a 
robust approach for real-time estimation. Experimental results 
highlight the effectiveness of the proposed method in improving  
both prediction accuracy and generalization across various 
conditions. 
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I. INTRODUCTION 

Artificial Intelligence (AI) has been extensively used to 
optimize performance, enhance decision-making and improve 
efficiency across various engineering domains, including 
robotics [1], smart home systems [2] and renewable energy 
technologies [3]. In the transportation sector, AI-driven 
models are integral to energy management and performance 
optimization, particularly in the advancement of sustainable 
mobility solutions [4]. 

In the context of solar-powered electric vehicles, real-time 
monitoring of system components and the selection of optimal 
driving strategies are critical for maximizing energy 
efficiency and ensuring overall functionality. A major 
challenge in this field lies in the effective management of 
battery load based on continuous electrical sensor readings, 
which helps optimize energy consumption. To address this 
issue, Machine Learning (ML) techniques can be employed to 
develop predictive models for motor efficiency and battery 
health estimation. However, traditional models often struggle 
to capture the intricate and dynamic relationships between 
electrical inputs and battery performance. 

This study presents a solution for battery voltage 
estimation by implementing and evaluating a Graph Neural 
Network (GNN) model that utilizes motor controller data, 
alongside battery pack measurements from thermistors and 
solar cells, to predict battery voltage with the lowest possible 
errors. GNNs are particularly well-suited for this application 
due to their capability to model graph-structured data, making 
them an effective framework for learning from time-
dependent sensor data in electric vehicle systems. 

II. RELATED WORK 

Many approaches have been explored for performance 
optimization in energy systems. Traditional methods, such as 
Naïve Bayes [5], k-NN [6] or direct mathematical formulae 
[7] work well on small datasets with few features, but fail to 

capture the relationships that inevitably appear between some 
of the input data. Recent advancements in deep learning have 
shown promise in addressing these limitations. However, 
these models typically assume grid-like or sequential data 
structures, which may not fully represent the interconnected 
nature of sensor data in electric vehicles. 

Graph Neural Networks (GNNs) have emerged as a 
powerful alternative for modeling such relational data. GNNs 
have been successfully applied in social network analysis, 
molecular property prediction, and recommendation systems 
[8]. Their ability to capture dependencies between nodes in a 
graph makes them particularly suitable for sustainable solar-
powered systems, where sensor data can be naturally 
represented as a graph of interconnected components.  

Some studies already attempted to integrate the GNNs 
complexity in solar power prediction, primarily focusing on 
meteorological data such as temperature, humidity and solar 
irradiance to improve forecasting accuracy [9]. In response, 
recent work has aimed to develop more comprehensive 
models by incorporating satellite cloud maps, real-time cloud 
tracking and ground sensors. This more extensive data web 
provides a better understanding of how atmospheric 
conditions evolve over time and how they influence solar 
power output [10]. Other papers focused on fault diagnosis by 
monitoring current and voltage production of photovoltaic 
systems [11]. 

The experimental results show that these new GNN 
models achieve high prediction accuracy and strong 
robustness, demonstrating better generalization ability in 
varying conditions. Additionally, they offer higher 
computational efficiency compared to older forecasting 
methods. Overall, this data-driven, AI-powered approach 
represents a promising direction toward maximizing solar 
power potential and enabling a cleaner, more sustainable 
energy future. 

III. METHODOLOGY 

A. GNN model 

The architecture used in this paper is a Graph Neural 
Network (GNN), a machine learning architecture designed to 
process data interpretable in the form of a graph. Unlike 
traditional neural networks that operate on grid-like 
structures, such as images or sequences, GNNs employ 
representations using nodes and edges to model relationships 
between interconnected entities [8].  

a) GNN Input Representation 
The input to the GNN consists of a feature matrix X∈RN×F, 

where N represents the number of time steps (or nodes in the 
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graph) and F denotes the number of extracted features. The 
features used include: 

 Temporal information: the timestamp converted 
into elapsed seconds of the day. 

 Battery parameters: battery voltage, current, 
maximum and minimum cell voltages and cell 
temperatures. 

 Motor controller readings: voltage and current 
values from the direct (Vd, Id) and quadrature (Vq, 
Iq) axes of the motor controller. 

 Two engineered features: voltage difference (ΔV) 
and power-to-voltage ratio (P/V). 

Each row in X represents a sample (or observation) and 
each column is a separate attribute (or feature). Since GNNs 
typically perform better on positive values, the columns are 
split into two: one for the positive part and one for the negative 
part. The features are normalized using a MinMaxScaler to 
ensure that they are within the same scale (between 0 and 1), 
an important operation for neural network, as it helps speed 
up convergence and avoids issues caused by some features 
dominating the others. 

To define the graph structure, an adjacency matrix is 
constructed based on temporal connectivity, where each node 
(or time step) is connected to its immediate predecessor and 
successor, forming a chain-like graph. Self-loops are added to 
preserve individual node information during message passing 
and ensure the neural network captures the self-interactions of 
the data. The graph structure is represented as an edge index 
E, stored as a list of connections between nodes. 

In each forward pass, the GNN receives both features (X) 
and the graph structure to compute predictions, considering all 
the relationships between consecutive samples. 

b) GNN Layers 
The model in this study consists of 5 convolutional layers, 

each with 256 hidden dimensions, Rectified Linear Unit 
(ReLU) activation function, a Dropout layer, and one fully-
connected layer for the output, as shown in Figure 1. The core 
mechanism behind the Graph Neural Network is message 
passing, where each node in the graph aggregates information 
(messages) from its neighbors to update its representation in 
each layer. After a forward pass, the convolutional layers’ 
output can be formulated as: 

  

where H(l) represents the feature matrix at layer l, and σ is 
the activation function, ReLU: 

  

The formula for the graph convolution being: 

  

with Â – the normalized adjacency matrix E, and W(l) – 
the matrix of weights for layer l. 

At the end of each forward pass of the entire model, the 
loss function is computed and backpropagated to update the 
weights on each layer before the next training epoch. 

 
Fig. 1. Figure 1. GNN achitecture 

B. Dataset description 

The data used for the task of battery voltage estimation 
was collected through the sensors on the Solis racing car 
during the iLumen European Solar Challenge 2024 
competition, over the course of 8 hours and multiple circuit 
laps. The values were stored in an InfluxDB container via 
Controller Area Network (CAN) bus communication and 
queried in .csv format. The battery can provide at most 160V 
(volts) and 21A (ampers), with the values for current and 
voltage at any given time measured in millivolts and 
milliampers, respectively. 
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An example of raw entries for the model is the one 
depicted in Figure 2: 

 

 
Fig. 2. Input Example 

Therefore, the features used for battery voltage prediction 
were: time (converted to seconds during preprocessing), 
BMU_MaxCellVoltage (maximum voltage from all the cells, 
in millivolts), BMU_MinCellVoltage (minimum voltage from 
all the cells, in millivolts), BMU_MaxCellTemperature 
(maximum temperature on the cells, in °C), 
BMU_MinCellTemperature (minimum temperature on the 
cells, in °C), BMU_BatteryCurrent (current recorded on the 
battery, in milliampers), MC_Vd, MC_Vq and MC_Id, 
MC_Iq (the direct and quadratic voltages and currents 
recorded on the Motor controller MC), all split into their 
positive and negative parts, as well as two new engineered 
features: voltage differences and power-to-voltage ratio. 

IV. SETUP 

A. Training and Optimization 
The model was trained over 350 epochs using the AdamW 

optimizer with an initial learning rate of 0.001 and weight 
decay of 1×10−5. A ReduceLROnPlateau scheduler was added 
to adjust the learning rate dynamically based on validation 
loss. The most efficient loss function for the battery voltage 
estimation task turned out to be Huber Loss, which provides 
robustness to outliers in the data.  

The Huber Loss function is a combination of the mean 
squared error (MSE) and mean absolute error (MAE), with a 
threshold δ. It is defined as: 

ቐ

ଵ

ଶ
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ଵ

ଶ
δቁ ,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where y is the true value (ground truth), y~ is the predicted 
value and δ is the threshold that defines the point where the 
loss function transitions from quadratic (MSE) to linear 
(MAE). In this study, δ is set to 0.5. 

If the error is small, this function behaves like mean 
squared error. However, if the error is large, it behaves like 
mean absolute error to reduce sensitivity to outliers. This 
allows for robust handling of noisy and missing data while 
maintaining smoothness near the true values. 

For the training of the GNN model, the dataset was split 
into 80% training set and 20% testing set, ensuring that edge 
connectivity is preserved for both sets. During each epoch, 
gradient clipping (max_norm=5.0) was applied to stabilize 
updates. Early stopping was implemented based on validation 
performance, with the best-performing model checkpoint 
saved for final evaluation. 

To match the scale of the target values, the final 
predictions were rescaled to their original range using the 
inverse transformation of the MinMaxScaler, ensuring 
accurate interpretation of results. 

B. Implementation 
The implementation of this model is intended for Python 

with PyTorch and Torch geometric to define the necessary 
layers. These libraries offer flexibility in designing and 
training AI models with various predefined and custom 
architectures, for any kind of data. PyTorch provides an 
intuitive framework for building neural networks, while Torch 
Geometric extends PyTorch by offering specialized tools for 
efficiently handling graph structures, performing message 
passing in GNNs. Figure 3 presents an example of using 
PyTorch to define the model used for this experiment: 
import torch 
from torch_geometric.nn import GCNConv 
 
class GNN(torch.nn.Module): 
    def __init__(self, input_dim, hidden_dim, output_dim): 
        super(GNN, self).__init__() 
        self.conv1 = GCNConv(input_dim, hidden_dim) 
        self.conv2 = GCNConv(hidden_dim, hidden_dim) 
        self.conv3 = GCNConv(hidden_dim, hidden_dim)  
        self.conv4 = GCNConv(hidden_dim, hidden_dim) 
        self.conv5 = GCNConv(hidden_dim, hidden_dim)   
        self.fc = torch.nn.Linear(hidden_dim, output_dim) 
        self.dropout = torch.nn.Dropout(0.2) 
 
    def forward(self, x, edge_index): 
        x = self.conv1(x, edge_index).relu() 
        x = self.dropout(x) 
        x = self.conv2(x, edge_index).relu() 
        x = self.dropout(x) 
        x = self.conv3(x, edge_index).relu() 
        x = self.dropout(x) 
        x = self.conv4(x, edge_index).relu() 
        x = self.dropout(x) 
        x = self.conv5(x, edge_index).relu() 
        x = self.dropout(x) 
        x = self.fc(x) 
        return x 

Fig. 3. Example of model definition in PyTorch 

To prepare the dataset for use in a Graph Neural Network 
(GNN), a structured preprocessing pipeline was followed that 
transforms the data in the correct format for the model. The 
dataset was originally stored in a .csv file and contained both 
positive and negative numerical values. The preprocessing 
involves cleaning and structuring the data into a graph format. 

a)  Libraries used for preprocessing 

 pandas: for reading and processing .csv files. 
 numpy: for numerical operations such as absolute 

values and clipping. 
b)  Data processing pipeline: 

1. Loading the file using pandas.read_csv() and 
keeping only the numerical columns; 

2. Handling negative values by splitting the 
columns with both positive and negative values 
into two separate ones and the converting the 
columns with all negative values to all positive; 

3. Structuring data for GNN input by creating a 
graph representation where each row represents 
a node and relationships are determined based 
on timestamps; 

4. Constructing the adjacency matrix using the 
existing PyTorch functions; 
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5. Converting data to PyTorch Geometric format: 
creating a new torch_geometric.data.Data 
object; 

These preprocessing steps ensured that the dataset was 
properly formatted for GNN training, with all features 
transformed into positive values and the relationships 
tbetween them correctly defined.  

V. SIMULATION RESULTS 

The trained GNN model was assessed using several 
regression metrics, as described in Table 1: 

TABLE I.  SIMULATION RESULTS 

Metric Formula(5, 6, 7, 8) Value for the 
trained model 

Mean Absolute 
Error (MAE) 

𝟏
𝒏
෍ |𝒚𝒊 െ 𝒚~𝒊|

𝒏

𝒊ୀ𝟏


718.1757 

Root Mean Squared 
Error (RMSE) 

ඩ
𝟏
𝒏
෍ሺ𝒚𝒊 െ 𝒚~𝒊ሻ𝟐
𝒏

𝒊ୀ𝟏

 

1265.4047 

R-Squared (R2) 
Score 

𝟏

െ
∑ ሺ𝒚𝒊 െ 𝒚~𝒊ሻ𝟐
𝒏
𝒊ୀ𝟏

∑ ሺ𝒚𝒊 െ 𝒚ഥሻ𝟐𝒏
𝒊ୀ𝟏

 

0.8496 

Mean Absolute 
Percentage Error 

(MAPE) 

𝟏𝟎𝟎
𝒏

෍ฬ
𝒚𝒊 െ 𝒚~𝒊

𝒚𝒊
ฬ

𝒏

𝒊ୀ𝟏

 
0.0060 

where y – true values, y~ - predicted values, 𝒚ഥ – mean of true values 

The mean absolute error shows that the average magnitude 
of the differences between the actual and predicted values is 
about 718, an acceptable value because of the scale of the 
battery voltages, which are calculated in millivolts, and not in 
volts. The root mean squared error suggests that the model 
occasionally predicts large deviations from the ground truth, 
which is normal due to the inherent variations in battery 
voltage. 

However, the R-squared score is a value close to 1, 
meaning that the model explains about 85% of the variance in 
the battery voltage predictions. The mean absolute percentage 
error is also a strong indicator of good performance, 
suggesting that the predictions are extremely accurate when it 
comes to the percentage error relative to the true values. 

During the 350 epochs of training, the loss decreased, as 
illustrated in Figure 4, indicating that the model learned and 
improved its predictions over time. The fluctuations in the 
graph suggest some periods of instability, but the general 
downward trend implies a progress in training. 

 
Fig. 4. Loss evolution during training (logarithmic scale) 

The final, best model resulted in predictions very close to 
the actual target values, as shown in Figure 5. Although there 
are areas where the model might struggle, such deviations are 
to be expected and do not undermine the GNN’s general 
ability to make accurate estimations. 

 

 
Fig. 5. True values and values predicted by the model 

VI. CONCLUSIONS 

Graph Neural Networks effectively capture the non-trivial 
dependencies between electric vehicle parameters and, unlike 
traditional models, can adapt to dynamic, time-varying 
electrical conditions, making them suitable for real-time 
applications. Leveraging both structural and temporal data, 
GNNs enhance prediction accuracy and robustness, ensuring 
reliable performance in tasks that involve sensor monitoring. 
Their adaptability makes them particularly useful for 
optimizing energy management in electric systems.  

As a result, GNN-based models offer a promising 
approach for improving efficiency and sustainability in 
modern transportation systems, especially in solar-powered 
electric vehicles. 
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